Lecture 2

Amplification and Single-rail Op-amp

Prof Peter YK Cheung Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2_CAS/ E-mail: p.cheung@imperial.ac.uk

PYKC 8 Oct 2024

What you will learn in Lectures 2 and 3?

- Small input signal
- High gain amplification
- Working with single power supply rail
- Low impedance load (next Lecture)

Non-inverting Amplifier & Voltage Follower

- Year 1 circuits module, part 1, lecture 9, slides 11 and 12
- Non-inverting amplifier using op-amp, Gain x4
- ♦ Special case: R2 = 0, $R1 = \infty$, Gain = 1
 - Voltage follower or unity gain buffer

Real-life Op Amp

МICROCHIP MCP6001/1R/1U/2/4

1 MHz, Low-Power Op Amp

Description

The Microchip Technology Inc. MCP6001/2/4 family of operational amplifiers (op amps) is specifically designed for general-purpose applications. This family has a 1 MHz Gain Bandwidth Product (GBWP) and 90° phase margin (typical). It also maintains 45° phase margin (typical) with a 500 pF capacitive load. This family operates from a single supply voltage as low as 1.8V, while drawing 100 μ A (typical) quiescent current. Additionally, the MCP6001/2/4 supports rail-to-rail input and output swing, with a common mode input voltage range of V_{DD} + 300 mV to V_{SS} – 300 mV. This family of op amps is designed with Microchip's advanced CMOS process.

- Limited to 1MHz signal frequency (GBP) (not infinite gain at all frequencies)
- Stable under high capacitance load (linked to phase margin)
- Single power supply operation
- Rail-to-rail input/output swing
- Low supply current when idle
- Near rail-to-rail common mode input voltage

MCP6001/2/4 as a near ideal op-amp

✓ Z_{in} of MCP6001 is very large

Common Mode Input Impedance	Z _{CM}	10 ¹³ 6	Ω pF
Differential Input Impedance	ZDIFF	10 ¹³ 3	Ω pF

Input current is negligible

Input Bias Current:	IB	±1.0	pA	
Industrial Temperature	I _B	19	pA	T _A = +85°C
Extended Temperature	Ι _Β	1100	pА	T _A = +125°C

Gain is near infinite (true at low frequency)

DC Open-Loop Gain (Large Signal)	A _{OL}	112 >1 x10 ⁵	dB
----------------------------------	-----------------	----------------------------	----

✓ Output impedance is low (specified as I_{SC})

Output Short Circuit Current	I _{SC}	±6	mA	V _{DD} = 1.8V
		±23	mA	V _{DD} = 5.5V

Problem with single supply rail

Output swing limited to rail voltages

Maximum Output Voltage Swing	V _{OL} , V _{OH}	V _{SS} + 25 V _{DD} - 25	mV	
------------------------------	-----------------------------------	--	----	--

Input cannot be a sinewave with 0V DC offset

Need to add DC offset to input

X4 amplifier fail

Amplifier Gain = +4, output swing = 2V to 6V – not possible

Attempt 1 – AC coupling signal

- ✤ AC couple input signal block DC offset to amplifier
- Does not work for single supply op-amp

Attempt 2 – Add bias to V+ input

- Bias input V+ to half of power supply rail voltage
 - Maximize input voltage swing
 - Still not working bias voltage is now the unwanted DC offset!

Final working solution

- Final solution: Add C3 such that gain of op-amp = 1 at 0 Hz (DC)
- ♦ Gain of op-amp at valid signal frequency is $G = 1 + \frac{R^2}{R^1}$

Better Bias Circuit

- ✤ Generate bias voltage using a voltage reference circuit, e.g. AP431i
- Bias voltage NOT susceptible to noise on 5V supply

AP431i voltage reference in detail

	Min	Typical	Max	
V _{REF} 1% Reference Voltage V _{KA} = V _{REF} , I _{KA}	= 1mA 2.475	2.500	2.525	v

Typical Max

Z _{KA} Dynamic Impedance $V_{KA} = V_{REF}$, I _{KA} = 1 to 100mA, f ≤ 1.0kHz 0.1 0.3 Ω				•		
	Z _{KA}	Dynamic Impedance	$V_{KA} = V_{REF}$, IKA = 1 to 100mA, f ≤ 1.0kHz	0.1	0.3	Ω

Open-loop Gain vs Frequency for MCP6001

Amplify 10kHz signal with Gain of 200

Solution - Two stage amplification

Problem with driving low impedance load

- Needs AC coupling due to output bias voltage of 2.5V
- Maximum current is over 600mA!
- MCP6001 cannot drive 8Ω speaker